
Collaborative Interface Agents

Yezdi Lashkari

MIT Media Laboratory,

Cambridge, MA 02139

yezdi@media.mit.edu

Max Metral

MIT Media Laboratory,

Cambridge, MA 02139

memetral@media.mit.edu

Pattie Maes

MIT Media Laboratory,

Cambridge, MA 02139

pattie@media.mit.edu

Abstract

Interface agents are semi-intelligent systems

which assist users with daily computer-based

tasks. Recently, various researchers have pro-

posed a learning approach towards building such

agents and some working prototypes have been

demonstrated. Such agents learn by `watching

over the shoulder' of the user and detecting pat-

terns and regularities in the user's behavior. De-

spite the successes booked, a major problem with

the learning approach is that the agent has to

learn from scratch and thus takes some time be-

coming useful. Secondly, the agent's competence

is necessarily limited to actions it has seen the

user perform. Collaboration between agents as-

sisting di�erent users can alleviate both of these

problems. We present a framework for multi-

agent collaboration and discuss results of a work-

ing prototype, based on learning agents for elec-

tronic mail.

Introduction

Learning interface agents are computer programs that

employmachine learning techniques in order to provide

assistance to a user dealing with a particular computer

application. Although they are successful in being able

to learn their user's behavior and assist them, a major

drawback of these systems is the fact that they require

a su�cient amount of time before they can be of any

use. A related problem is the fact that their compe-

tence is necessarily restricted to situations similar to

those they have encountered in the past. We present

a collaborative framework to help alleviate these prob-

lems. When faced with an unfamiliar situation, an

agent consults its peers who may have the necessary

experience to help it.

Previous interface agents have employed either end-

user programming and/or knowledge engineering for

knowledge acquisition. For example, (Lai, Malone, &

Yu 1988) have \semi-autonomous agents" that consist

of a collection of user-programmed rules for processing

information related to a particular task. The problems

with this approach are that the user needs to recog-

nize the opportunity for employing an agent, take the

initiative in programming the rules, endow this agent

with explicit knowledge (speci�ed in an abstract lan-

guage), and maintain the rules over time (as habits

change etc). The knowledge engineered approach on

the other hand, requires a knowledge engineer to out-

�t an interface with large amounts of knowledge about

the application and the domain and how it may con-

tribute to the user's goals. Such systems require a large

amount of work from the knowledge engineer. Further-

more, the knowledge of the agent is �xed and cannot be

customized to the habits of individual users. In highly

personalized domains such as electronic mail and news,

the knowledge engineer cannot possibly anticipate how

to best aid each user in each of their goals.

To address the problems of the rule-based and

knowledge-engineered approaches, machine learning

techniques have been employed by (Kozierok & Maes

1993; Maes & Kozierok 1993; Hermens & Schlimmer

1993; Dent et al. 1992) and others. In the Calendar

Agent (Kozierok & Maes 1993), memory-based reason-

ing is combined with rules to model each user's meeting

scheduling habits. Results described in (Kozierok &

Maes 1993) show that the learning approach achieves a

level of personalization impossible with knowledge en-

gineering, and without the user intervention required

by rule-based systems. It is also interesting to note

that the addition of rules provides the 
exibility to ex-

plicitly teach the agent, and shows that the rule-based

and learning approaches can successfully coexist.

While the learning approach enjoys several advan-

tages over the others, it has its own set of de�ciencies.

Most learning agents have a slow `learning curve' ; that

is, they require a su�cient number of examples be-

fore they can make accurate predictions. During this

period, the user must operate without the assistance

of the interface agent. Even after learning general

user behavior, when completely new situations arise

the agent may have trouble dealing with them. The

agents of di�erent users thus have to go through simi-

lar experiences before they can achieve a minimal level

of competence, although there may exist other agents

that already possess the necessary experience and con-

�dence.



We propose a collaborative solution to these prob-

lems. Experienced agents can help a new agent come

up to speed quickly as well as help agents in unfamiliar

situations. The framework for collaboration presented

here allows agents of di�erent users, possibly employ-

ing di�erent strategies (rule-based, MBR, CBR, etc.)

to cooperate to best aid their individual users. Agents

thus have access to a much larger body of knowledge

than that possessed by any individual agent. Over time

agents learn to trust the suggestions of some of their

peers more than others for various classes of situations.

Thus each agent also learns which of its peers is a re-

liable `expert' vis-a-vis its user for di�erent types of

situations.

A Single User's Agent

This paper describes experiments conducted with im-

plemented interface agents for the electronic mail

domain for a commercial email application, Eu-

dora (Dorner 1992). This section describes an indi-

vidual email agent.

Each user's interface agent learns by continuously

\looking over the shoulder" of the user as the user is

performing actions. The interface agent monitors the

actions of the user over long periods of time, �nds re-

current patterns and o�ers to automate them. For

example, if an agent notices that a user almost al-

ways stores messages sent to the mailing-list \genetic-

algorithms" in the folder AI Mailing Lists, then it can

o�er to automate this action next time a message sent

to that mailing list is encountered. The agent can also

automate reading, printing, replying, and forwarding

as well as assign priority to messages.

We have chosen Memory Based Reasoning (Stan-

�ll & Waltz 1986) as the algorithm which attempts to

capture user patterns. Our implementation of MBR is

based upon the concepts of situations and actions. In

the electronic mail domain, we choose mail messages

along with some context information to represent sit-

uations and the user's handling of the messages as ac-

tions. At any particular point in time, the user may be

presented with a number of messages. When the user

takes an action, it is paired with the corresponding sit-

uation and the situation-action pair is recorded in the

agent's memory. For example, if the user reads a mes-

sage M, the pair < M

0

, read-action> is memorized,

where M

0

contains details about the message M and

relevant context information (for example thatM was

read n

th

out of a total of k unread messages). When

new situations occur, they are compared to the situa-

tions previously encountered. After gathering the clos-

est matching situations in memory, the agent can cal-

culate a prediction for an action in the new situation.

In addition, the agent can calculate a con�dence in its

prediction by considering such factors as the number

of situations in its memory and the proximity of the

culled situations to the new situation. For a more de-

tailed description, see (Kozierok & Maes 1993).

A situation is speci�ed in terms of a set of �elds.

MBR measures situation proximity by applying a

weighted sum of the distance between the correspond-

ing �elds of two situations. In the e-mail domain, ap-

propriate �elds would be the originator of the message,

the subject, etc. The values of �elds may be of any

type. In previous systems, these �elds were mainly

strings or other static values. In our implementation,

�eld values can also be objects. These objects can in

turn have �elds, which may be used in predicting ac-

tions. For example, the originator of a message is a

Person object, which contains �elds such as that per-

son's position in an organization and their relation to

the user. Object-based MBR is much less brittle than

traditional MBR systems and can also use extra knowl-

edge present in the objects if it �nds it to be useful. For

example, let's say that Mary always reads all messages

from her boss Kay. If Mary were to suddenly receive a

message from Kay's boss (therefore also Mary's boss),

the system will correctly suggest that Mary read the

message, since it uses the knowledge that Mary reads

everything from her boss (and therefore probably her

boss's boss too) although it has never previously re-

ceived a message from Kay's boss.

1

Thus object-based

MBR allows the same situation to be viewed di�erently

depending on what information is available. In con-

trast, a string-based MBR system does not possess the

same 
exibility since we cannot extract more features

from the string.

After predicting an action for a given situation, the

agent must decide how to use that prediction. For each

possible action, the user can set two con�dence thresh-

olds: the tell-me threshold and the do-it threshold.

If the con�dence in a prediction is above the tell-me

threshold, the email agent displays the suggestion in

the message summary line. If the con�dence is above

the do-it threshold, the agent autonomously takes the

action.

The agent's con�dence in its predictions grows with

experience, which gives the user time to learn to trust

the agent. During this period, it is especially useful to

give the user the opportunity to see exactly what the

agent is doing. This feedback is accomplished in three

ways: an activity monitor, an explanation facility, and

an interface to browse and edit the agent's memory.

The activity monitor presents a small caricature to the

user at all times. The caricature depicts states such as

alert, thinking, and working, similar to (Kozierok &

Maes 1993). An explanation facility provides English

descriptions of why the agent suggested an action.

An agent starts out with no experience. As messages

arrive and its user takes action, its memory grows.

Only after a su�cient number of situation-action pairs

have been generated, is the agent able to start predict-

ing patterns of behavior con�dently and accurately.

1

Information about Kay and her boss are retrieved from

a knowledge base of the kind maintained by most corpora-

tions or university academic departments.



However, when it encounters a new situation that is

unlike anything it has in its memory, it is still unsure

of what to do. This is because the machine learning

algorithm used requires the training examples to cover

most of the example space to work e�ectively.

A Framework For Collaboration

We propose a collaborative solution to the problems

above. While a particular agent may not have any

prior knowledge, there may exist a number of agents

belonging to other users who do. Instead of each agent

re-learning what other agents have already learned

through experience, agents can simply ask for help in

such cases. This gives each agent access to a potentially

vast body of experience that already exists. Over time

each agent builds up a trust relationship with each of

its peers analogous to the way we consult di�erent ex-

perts for help in particular domains and learn to trust

or disregard the opinions of particular individuals.

Collaboration and communication between various

agents can take many di�erent forms. This paper is

only concerned with those forms that aid an agent in

making better predictions in the context of new situa-

tions. There are two general classes of such collabora-

tion.

Desperation based communication is invoked when

a particular agent has insu�cient experience to make

a con�dent prediction. For example, let us suppose

that a particular agent A

1

has just been activated with

no prior knowledge, and its user receives a set of new

mail messages. As A

1

doesn't have any past experi-

ence to make predictions, it turns in desperation to

other agents and asks them how their user would han-

dle similar situations.

Exploratory communication, on the other hand, is

initiated by agents in bids to �nd the best set of peer

agents to ask for help in certain classes of situations.

We envisage future computing environments to have

multitudes of agents. As an agent has limited resources

and can only have dealings with a small number of its

peers at a given time, the issue of which ones to trust,

and in what circumstances, becomes quite important.

Exploratory communication is undertaken by agents

to discover new (as yet untried) agents who are better

predictors of their users' behaviors than the current set

of peers they have previously tested.

Both forms of communication may occur at two or-

thogonal levels. At the situation level, desperation

communication refers to an agent asking its peers for

help in dealing with a new situation, while exploratory

communication refers to an agent asking previously

untested peers for how they would deal with old sit-

uations for which it knows the correct action, to de-

termine whether these new agents are good predictors

of its user's behavior. At the agent level, desperation

communication refers to an agent asking trusted peers

to recommend an agent that its peers trust, while ex-

ploratory communication refers to agents asking peers

for their evaluation of a particular agent perhaps to

see how well these peers' modelling of a particular

agent corresponds with their own. Hence agents are

not locked into having to turn for help to only a �xed

set of agents, but can pick and choose the set of peers

they �nd to be most reliable.

For agents to communicate and collaborate they

must speak a common language as well as follow a

common protocol. We assume the existence of a de-

fault ontology for situations in a given domain (such

as electronic news, e-mail, meeting scheduling, etc).

Our protocol does not preclude the existence of multi-

ple ontologies for the same domain. This allows agent

creators the freedom to decide which types of ontolo-

gies their agents will understand. As the primary task

of an agent is to assist its particular user, the protocol

for collaboration is designed to be 
exible, e�cient and

non-binding. We brie
y present the protocol below.

� Registration: Agents wishing to help others regis-

ter themselves with a \Bulletin Board Agent" whose

existence and location is known to all agents. While

registering, agents provide information regarding

how they can be contacted, what standard domains

they can provide assistance in, what ontologies they

understand and some optional information regard-

ing their user. Every agent registering with a bul-

letin board agent is given a unique identi�er by the

bulletin board.

� Locating peers: Agents wishing to locate suitable

peers may query bulletin board agents. An agent

querying a bulletin board agent need not itself reg-

ister with that bulletin board. Queries to a bulletin

board agent can take many di�erent forms depend-

ing on the type of information required. This allows

agents to locate suitable peers in the most conve-

nient way. For example, an agent's user may explic-

itly instruct it to ask a speci�c user's agent for help

in dealing with certain types of situations.

� Collaboration: Collaborative communication be-

tween agents occurs in the form of request and reply

messages. An agent is not required to reply to any

message it receives. This leaves each agent the free-

dom to decide when and whom to help. Any request

always contains the agent's identi�er, the agent's

contact information (for replies), the ontology used

in the request, and a request identi�er (reqid) gener-

ated by the agent issuing the request. The reqid is

necessary since an agent may send out multiple re-

quests simultaneously whose replies may arrive out

of order.

Analogously every reply always contains the replying

agent's identi�er and the reqid used in the request.

The types of requests and their associated replies are

presented below.

{ Situation level collaboration: When a sit-

uation occurs for which an agent does not have



a good prediction, it sends o� a Request-for-

Prediction message to its peers. A prediction re-

quest contains all the features of the situation

which the agent issuing the request wishes to di-

vulge. This allows the requesting agent the free-

dom to withhold sensitive or private information.

An agent receiving a prediction request may

choose to ignore it for any of a variety of reasons.

It may not have a good prediction for the speci�c

situation, it may be too busy to respond, the agent

issuing the request may not have been very help-

ful in the past, or the agent may not be important

enough. If however, an agent decides to respond

to a prediction request, it sends back a response

containing its prediction and its con�dence in this

prediction (a normalized value).

Note that the prediction request is used by agents

for both desperation and exploratory communi-

cation. An agent receiving a prediction request

does not know whether the request originated via

exploratory or desperation based behavior on the

part of the agent issuing that request. The dis-

tinction is made by the agent issuing the request.

Replies to requests sent in desperation are used to

predict an action for a particular situation, while

replies to requests sent in exploratory mode are

compared with the actions that the user actually

took in those situations, and are used to model

how closely a peer's suggestions correspond with

its user's actions.

{ Agent level collaboration: An agent may send

its peers a Request-for-Evaluation request. An eval-

uation request is sent when an agent wants to

know what some of its peers think about a cer-

tain agent in terms of being able to model their

users in particular classes of situations. An eval-

uation request contains the identi�er of the agent

to be evaluated (designated as the target agent)

and the particular class of situations for which the

evaluation is needed.

In any domain and ontology there exist di�erent

classes of situations. Certain agents may model

a particular user's behavior in a particular class

of situations very well and fail miserably in other

classes. Note that we expect the domain ontolo-

gies to de�ne these classes. For example an email

agent may discover that peer agent A

1

is a very

good predictor of its user's actions for messages

sent to a mailing list, while being quite useless in

predicting what its user does with any other type

of message. On the other hand peers A

2

and A

3

are excellent predictors of its user's behavior with

regards to email forwarded by her groupmates.

This enables agents to locate and consult di�erent

`expert' peers for di�erent classes of situations.

An agent that chooses to respond to an evalua-

tion request sends back a normalized value which

re
ects its trust in the target agent's ability to

model its user's behavior for that particular class

of situations.

An agent may also ask trusted peer agents to rec-

ommend a peer who has been found to be useful by

the trusted peer in predicting its user's behavior

for a particular class of situation. A Request-for-

Recommendation contains the situation class for

which the agent would like its trusted peer to rec-

ommend a good agent. Replies to recommenda-

tion requests contain the identi�er and contact in-

formation of the agent being recommended.

Agents model peers' abilities to predict their user's

actions in di�erent classes of situations by a trust value.

For each class of situations an agent has a list of peers

with associated trust values. Trust values vary between

0 and 1.

The trust values re
ect the degree to which an agent

is willing to trust a peer's prediction for a particular

situation class. A trust value represents a probabil-

ity that a peer's prediction will correspond with its

user's action based on a prior history of predictions

from the peer. Agents may start out by picking a set of

peers at random or by following their user's suggestion

as to which peer agents to try �rst. Each previously

untested peer agent gets has its trust level set to an

initial value. As a peer responds to a prediction re-

quest with a prediction p, and an agent's user takes a

particular action a, the agent updates the trust value

of its peer in the appropriate situation class as follows:

trust =
clamp(0; 1; trust+ �

p;a

� (
 � trust � conf))

where

�

p;a

=

�

+1 if prediction p = user action a

�1 if prediction p 6= user action a

and trust represents the trust level of a peer, conf

represents the con�dence the peer has in this par-

ticular prediction, 
 is the trust learning rate, and

clamp(0; 1; c) ensures that the value of c always lies

in (0; 1]. The rationale behind the modelling above is

as follows. An agent's trust in a peer rises when the

peer makes a correct prediction and falls for incorrect

predictions. The amount it rises and falls by depends

on how con�dent the peer was in its prediction. That

is, a peer who makes an incorrect prediction with a

high con�dence value should be penalized more heav-

ily than one that makes an incorrect prediction but

with a lower con�dence value.

When an agent sends out a prediction request to

more than one peer it is likely to receive many replies,

each with a potentially di�erent prediction and con�-

dence value. In addition, the agent has a trust value

associated with each peer. This gives rise to many

possible strategies which an agent can use to choose a

prediction and a con�dence value for this prediction.

We believe that both trust and peer con�dence should

play a role in determining which prediction gets se-

lected and with what con�dence. Each predicted ac-

tion is assigned a trust-con�dence sum value which is



the trust weighted sum of the con�dence values of all

the peers predicting this action. The action with the

highest trust-con�dence sum is chosen. The con�dence

associated with the action chosen is currently that of

the most con�dent peer suggesting this action. We are

exploring more sophisticated trust-con�dence combi-

nation strategies using decision theoretic and Bayesian

strategies.

Experimental Results

The concepts above have been implemented for a com-

mercial electronic mail handler (Eudora) for the Ap-

ple Macintosh. The agent, implemented in Macintosh

Common Lisp, communicates with the mail applica-

tion using the AppleEvent protocol. The MBR Engine

is domain independent, and can be easily adapted to

calendar applications or news readers. Furthermore,

all of these applications can share �elds and actions. As

more applications implement an AppleEvent interface,

the agent should be able to aid the user with these ap-

plications as well. Currently, several users are actively

making use of the agent on their actual mail. While

the computations are intensive, we have achieved sat-

isfactory performance on most high end Macintoshes.

The performance of MBR in interface agents has

been documented in (Kozierok & Maes 1993). We

wish to show that multi-agent collaboration strictly

improves upon results obtained from single agent

systems. Namely, multi-agent collaboration should

steepen the learning curve and improve the handling

of entirely novel messages.

To illustrate this, we set up the following scenario

using the actual e-mail of two graduate students over

a three day period (approximately 100 messages per

user).

Calvin and Hobbes are two graduate students in the

Intelligent Agents group.

1. Hobbes : Hobbes has been around for some time

and hence his agent is quite experienced. Hobbes'

agent has noted the following trends in its user's be-

havior. All messages to `bpm', a music mailing list

are re�led to a folder called bpm for later reading.

Messages directly addressed to Hobbes are read by

him and then deleted, as are messages to other mail-

ing lists.

2. Calvin : Calvin is a new graduate student in the

group. Calvin's agent starts out with absolutely no

experience. Calvin also re�les all messages from the

`bpm' list for later perusal. He deletes subscription

requests sent to the list. Calvin reads messages di-

rectly addressed to him, and then re�les them to

appropriate folders. The rest of his mail, such as

messages to other lists, he reads and deletes.

We plotted the con�dence of Calvin's agent's sug-

gestions as Calvin takes actions on about 100 actual

mail messages. Figure 1 shows the results obtained.

The x-axis indicates the growing experience of Calvin's

Number of Examples

0 10 20 30 40 50 60 70 80 90 100 110

C
o

n
fi
d

e
n

c
e

 i
n

 P
re

d
ic

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

Correct Incorrect

Figure 1: Performance without Collaboration

agent as Calvin takes successive actions on the mail

messages and the number of situation-action pairs in

the memory increases. The thick rising trend line in-

dicates how Calvin's agent's performance (in terms of

con�dence in predictions) rises slowly with experience.

The numerous pockets show new user behavior being

modeled. The agent makes several mistakes very early,

which is to be expected, since the situations it has in

its memory early on do not e�ectively capture all of

Calvin's behavior patterns. Towards the end, we see

several more mistakes, which re
ect a new pattern oc-

curing. With the tell-me threshold for all actions set

at 0.1, the graph shows that it will take approximately

40 examples for the agent to gain enough con�dence

to consistently have suggestions for the user.

Number of Examples

0 10 20 30 40 50 60 70 80 90 100 110

C
o

n
fi
d

e
n

c
e

 i
n

 P
re

d
ic

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

Correct Incorrect

Figure 2: Performance with Collaboration

Figure 2 shows the level of con�dence of Calvin's

agent in its suggestions with multi-agent collabora-



tion.

2

It may be noted that the con�dence levels

of all correct suggestions are always greater than the

con�dence levels generated by Calvin's agent alone

at any point. The thick horizontal trend line indi-

cates that multi-agent collaboration enables an inexpe-

rienced agent to make accurate predictions with high

con�dence as soon as it is activated as well as �ll in

gaps in even an experienced agent's knowledge. Note

that trust modelling of Hobbes' agent is taking place

inside Calvin's agent with each action Calvin takes on

his mail. Space restrictions preclude the presentation

of results regarding trust modelling of multiple peers

in this paper.

Related Work

Various types of learning interface agents have been im-

plemented (Kozierok & Maes 1993; Maes & Kozierok

1993; Hermens & Schlimmer 1993; Dent et al. 1992).

All of them are essentially designed to act in a stand-

alone fashion or engage in restricted task speci�c com-

munication with identical peers. Our agents not only

come up to speed much faster, but also discover which

of a large set of heterogeneous peers are useful consul-

tants to know in particular domains.

Multi-Agent Systems research has concentrated on

negotiation and cooperation strategies that are used

by autonomous agents who must compete for scarce

resources. Various formal protocols and frameworks

have been proposed to model agent's intentions, do-

mains and negotiation strategies (Zlotkin & Rosen-

schein 1993; Rosenschein & Genesereth 1985) based on

various game-theoretic, logical, economic and speech-

act models. While the analytic frameworks above are

important, most are based on restrictive assumptions

about the domain or the agents' capabilities and as-

sume that the reason agents cooperate is because they

need access to a shared resource or have multiple over-

lapping goals.

The Ontolingua tools (Gruber 1993) and the work

on the KQML Agent-Communication Language (Finin

et al. 1993) provide a way for agents using di�erent on-

tologies to communicate e�ectively with each other and

may be used to implement our collaborative architec-

ture. Our research represents an actually implemented

system in a real domain that shows the bene�ts of col-

laboration amongst agents.

Conclusions

We have implemented a learning interface agent for

a commercial application in a real world domain, and

have tested it with real world data. Results have shown

that multi-agent collaboration steepens the agent's

learning curve, and helps in new, unseen situations.

Trust modeling allows each agent to build a model of

2

Hobbes takes no actions on his mail for the duration

of this experiment, hence his agent's con�dence remains

unchanged.

each agent's area of expertise, and consult only those

agents which will be useful for each area.

Acknowledgments

This research was sponsored by grants from Apple

Computer Inc. and the National Science Foundation

under grant number IRI-92056688.

References

Dent, L.; Boticario, J.; McDermott, J.; Mitchell, T.;

and Zabowski, D. 1992. A personal learning appren-

tice. In Proceedings of the Tenth National Conference

on Arti�cial Intelligence, 96{103. San Jose, Califor-

nia: AAAI Press.

Dorner, S. 1992. Eudora Reference Manual. Qual-

comm Inc.

Finin, T.; Weber, J.; Wiederhold, G.; Genesereth,

M.; Fritzson, R.; McKay, D.; McGuire, J.; Pelavin,

R.; Shapiro, S.; and Beck, C. 1993. Speci�cation of

the KQML agent-communication language. Techni-

cal Report EIT TR 92-04 (Revised June 15, 1993),

Enterprise Integration Technologies, Palo Alto, CA.

Gruber, T. 1993. A translation approach to

portable ontology speci�cation. Knowledge Acquisi-

tion 5(2):199{220.

Hermens, L., and Schlimmer, J. 1993. A machine

learning apprentice for the completion of repetitive

forms. In Proceedings of the Ninth IEEE Conference

on Arti�cial Intelligence for Applications, 164{170.

Orlando, Florida: IEEE Press.

Kozierok, R., and Maes, P. 1993. A learning inter-

face agent for scheduling meetings. In Proceedings of

the ACM SIGCHI International Workshop on Intelli-

gent User Interfaces, 81{88. Orlando, Florida: ACM

Press.

Lai, K.; Malone, T.; and Yu, K. 1988. Object lens: A

spreadsheet for cooperative work. ACM Transactions

on O�ce-Information Systems 5(4):297{326.

Maes, P., and Kozierok, R. 1993. Learning inter-

face agents. In Proceedings of the Eleventh National

Conference on Arti�cial Intelligence, 459{465. Wash-

ington D.C.: AAAI Press.

Rosenschein, J., and Genesereth, M. 1985. Deals

among rational agents. In Proceedings of the Ninth

International Joint Conference on Arti�cial Intelli-

gence, 91{99. Los Angeles, CA: Morgan Kaufmann.

Stan�ll, C., and Waltz, D. 1986. Toward memory-

based reasoning. Communications of the ACM

29(12):1213{1228.

Zlotkin, G., and Rosenschein, J. 1993. A domain

theory for task oriented negotiation. In Proceedings

of the Thirteenth International Joint Conference on

Arti�cial Intelligence, 416{422. Chambery, France:

Morgan Kaufmann.


